e —— v~ — v - TTMmL/ITVATWy 1 AYE L

Document Number: X3J16/92-0078
WG21/N0155
Date: 11 September, 1992
Project: Programming Language C++
Reply to: Dan Saks
dsaks@wittenberg.edu

X3J16 Meeting No. 9
WG21 Meeting No. 4
July 13-17, 1992

Toronto Hilton International
145 Richmond Street West
Toronto, Ontario M5H 2L2 Canada

1

1.1
1.2
1.3

1.4

Opening activities

Lenkov convened the meeting as chair at 9:04 (EDT) on Monday, July 13,
1992. Clamage was the vice-chair, and Saks was the secretary.

IBM, represented 6& Knuttila and Lajoie, hosted the meeting.
Opening comments

Introductions

Membership, voting rights, and procedures for the meet ing

Clamage asked members to notify him of corrections to the membership
Tist. Saks circulated an attendance list each day, which is attached as
Appendix A of these minutes.

Lenkov reminded the attendees that this is a joint meeting of WG21 and
X3J16. (The joint committee is denoted WG21+X3J16 in these minutes.)

In straw votes, all WG21 technical experts may vote, even if this is the
first meeting they’ve attended; however, X3J16 attendees can vote only
if they are the voting representative-of a member organization that has
been represented at either of the previous two meetings. In WG21 formal
votes, only the head of each national delegation may vote. In X3J16
formal votes, only one representative from each X3J16 member organiza-

tion may vote if the organization meets the aforementioned attendance
requirement.

Approval of the minutes from the previous meeting

Saks submitted the minutes from the previous meeting (92-0041 = NO118)
for approval. He noted numerous minor corrections:

1. On page 1, change the date at the top center "1992".

2. On page 1, in the first sentence of item 1, delete "by Lenkov".

83

1.5

1.6

1.7

1.7.1

X3J16/92-0041 = WG21/N0118, Page 2

3. On page 11, in the first sentence of the paragraph beginning with
"Koenig explained", change "than" to “"that".

4. On page 12, in the last sentence in the paragraph beginning "Plauger
thought", change "determined prior" to "determined by prior".

5. On page 15, add : public X to the declaration of Y in the code
fragment. ‘

6. On page 18, in the first sentence of the third paragraph from the
end, change "produce a safe" to "produce safe".

7. On page 21, in thé third sentence of the second paragraph, change
"in style" to "in a style".

8. In Appendix B, add the motion by Plum/O’Riordan (from page 25) to
accept the Working Paper as item 4 and renumber all subsequent
motions.

Motion by Shopiro/Bruck: "Move we approve 92-0041 = NO118 with these
corrections as the minutes of the previous meeting."

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 5 yes, 0 no.

Distribution of position papers, WG deliverables, and other documents
not distributed before the meeting

Agenda review and approval

Lenkov submitted the proposed agenda (92-0063 = N0140) for approval. He
proposed adding a technical session on strings on Monday at 19:30.
Lajoie requested an additional item 1.7.1 to report on the previous
evening’s WG21 meeting.

Motion by Saks/O’Riordan: "Move that we accept the proposed agenda with
these additions." :

Motion passed X3J16: lots yes, 0 no,:i abstain.
Motion passed WG21: 5 yes, 0 no, O abstain.

Conversion to type I - X3 Approval

Lenkov reported that X3 approved converting C++ standards development to
a type I project (92-0065 = N0142).

Report on the previous evening’s WG21 meeting

Lajoie and Saks explained that WG21 selects a drafting committee for
each meeting. Each motion must be presented in writing to the drafting
committee for approval and possible rewording before the committee can
vote on it. This insures that members whose native language is not

1.8

English (and even those whose native language is English) have an
opportunity to read the motion and understand it before voting. The
drafting committee for this meeting was Saks and Rafter.

Lajoie and Saks asked that each working group designate a scribe to
bring the WG’s motion to the drafting committee. They wanted the
scribes to be members of the drafting committee as well. The drafting
committee will meet at the end of Thursday’s session to finalize the
wording of formal motions to be presented Friday. No one objected to
the request.

Lajoie asked Lenkov to call for a volunteer to act as liaison to
SC21/WG3 (SQL) committee. Schwarz thought we decided last time not to
send a liaison. Lajoie disagreed, explaining that several members at
the last meeting thought sending a liaison was a good idea, but no one
volunteered. Beech (a member of the ANSI SQL committee X3H2) favored
sending a liaison, adding that it would aid the discussions of a C++
binding for SQL.

Lenkov asked for a volunteer to be liaison to SC21/WG3. No one
volunteered.

Lajote also asked for a volunteer to be liaison to WG20. She added that
Carter has already asked WG20 to add Steinmuller and Vilot to its
mailing list, and Carter will ask WG20 to also add Plauger and Shopiro
as well.

Lajoie asked the Libraries WG to consider Plum’s Jocaledef proposal
(NO126 = 92-0049). She also asked them to consider the AFNOR C++
Experts group’s concerns about synchronizing the IS0 C Tibrary with the
C++ library. Plauger explained that the AFNOR C++ group is concerned
because WG14 (ISO C) expects to vote out the normative addendum to ISO C
for DIS balloting in December. This addendum includes a major addition
to large character set support.

N\

Liaison reports
=== X3J11 (ANSI C) ===

Plauger explained that X3J11 is still working on acceptance of its type
I project. It is also waiting to hear from ISO about how to handle
interpretations of the standard.

=== WG14 (ISO C) ===

Plauger explained that the WG14 normative addendum contains three parts:
1. UK’s clarifications of ambiguities in the ISO C standard

2. Japanese extensions for multibyte character support

3. Danish alternate to trigraphs

He said that although it’s very likely that the first two parts will be
approved, it’s possible that the third part might not, which would put C
out of synch with C++.

85

2.1

2.2

X3J16/92-0041 = WG21/NO118, Page 4

=== X3J11.1 (NCEG) ===

Swan said he hasn’t been attending NCEG meetings, so he shouldn’t be
liaison anymore.

Clamage noted that some NCEG papers were distributed in recent
WG21+X3J16 mailings.

Plauger explained that NCEG is not producing a standard, but rather a
technical report that recommends ways for implementors to experiment
with numerical extensions.

WG reports
Lenkov opened the committee of whole.
Core Language WG

Lenkov said that Koenig was absent due to illness. Lajoie offered to
head the WG at this meeting.

Plum suggested that the Core WG needed two chairs -- a program manage-
ment chair and a technical chair. Others agreed with Plum. Schwarz
suggested forming another working grouping to handle the lesser core
issues that are essentially editorial.

Lajoie offered to take care of administrative issues within the Core
Language WG and insure that tasks are delegated properly.

Lajoie summarized the foremost open issues:
1. Name lookup
-- friend classes and friend functions
-- class types first referenced in a parameter list
-- template type arguments
-- incomplete types
2. Lifetime of temporaries
3. Interaction of function overloading and argument matching

Shopiro suggested that the Core group:should look at Kendall’s paper
(92-0053 = N0130) on unifying lvalue and references. Schwarz said it
contains no changes; it’s all editorial. Kendall said he proposed some

minor changes. Lenkov asked the Core group to look at the paper and
decide.

Extensions WG

In Stroustrup’s absence, Knuttila presented the WG’s report. They had

two top concerns:

-- run-time type identification

-- name space control.

They also planned to consider:

-- operator new and operator delete for arrays

-- ~const - declaring members "never const" so you don’t have to cast
away constness when implementing logically const objects

2.3

-- overloading operator.()

Kendall asked if there was a procedure for rejecting, more-or-less
finally, a proposed extension. Several members said no.

The committee discussed policies on sending rejection letters to people
who have proposed extensions. Schwarz suggested that each such letter
should be a polite "thanks for sharing" letter, with relevant technical.
papers attached, but no formal statement of the committee’s action. He
did not want to give proposers grounds for protesting the manner in
which their proposals were handled. 0’Riordan noted that each letter
comes from member of Extensions group, not from the committee.

After further discussion, Lenkov said that when there are papers
summarizing the WG's reasons for rejecting a proposed extension, the
letter writer should send them along with the rejection letter whenever
appropriate. No one objected.

Libraries WG

Vilot presented the Libraries WG report (92-0034 = NO111). He said the
proposed Working Paper section on Language Support (92-0042 = N0120)
might be ready for a vote at this meeting. The proposed bits and ,
bit_string classes (92-0051 = N0O128) might also be ready. He also asked
members to read and comment on the revised input/output library (92-0059
= NO136) and the string library (92-0045 = N0122).

Vilot outlined the WG’s open issues:

1. language support:
-- should operator new return a null or throw an xalloc?
-- renew function template
-- assertion support
2. input/output:
-- copy constructors
-- national language character, wide character and multibyte
character support
-- file open modes -
-- exceptions thrown by streambuf
-- string streams
-- exception specifications
-- const qualifiers
3. C library:
-- are wchar_t, size_t, etc. distinct for overloading? (depends on
Core WG)
-- signals and exceptions
-- localedef
4. strings:
-- national language character set support, e.g., is ASCII 0x00
allowed at arbitrary positions?
-- function and operator overloading
-- temporaries and char * conversions (depends on Core WG)
-- regular expressions
-- string streams

87

2.4

2.5

X3J16/92-0041 = WG21/NO118, Page 6

-- exception specifications
5. containers:
-- DynArray<T>, PointerDynArray<T>
-- exception specifications
-- should operator[] be overloaded despite the possibility of
dangling references?
-- bits<n>, bit_string

Vilot also said they will consider the AFNOR C++ Experts’ concerns over
synchronizing the C++ and ISO C libraries.

Environments WG

Stone presented the WG’s report. He summarized the status of their open
issues:

1. One Definition Rule (ODR) -- Turner, Johnson and Rabinov offered to
write a paper, but did not. Chapin volunteered to update his

earlier proposal (91-0073), especially with regard to template
instantiation.

2. Translation Limits
-- Stone consolidated email discussion by Stone, KohImiller,
Edelson and Clamage
-- Stone will broadcast a rough draft of a proposal with rationale
to the x3j16-al7 reflector after this meeting

3. Mixed C/C++ Environments - Hartinger, Schwarz and Yaker offered to
work on this, but made no progress.

4. Static Initialization
-- Kearns replied via email to the discussion of his proposals at
the last meeting. He submitted revised proposals via email
(X3j16-env-293).
-- The WG will discuss Kearns’ proposals 1, 3 and 5.
-- The WG may reconsider feasibility of dynamic initialization.

5. Accessing argc and argv from static constructors
Stone reported that traffic on their email reflector was light. They
did not plan to present any formal proposals to entire committee at his
meeting.
Formal Syntax WG
Roskind summarized the WG’s open issues:
1. Binding of :: vs. struct for referring to hidden class names:
-- Struct ::T vs. ::struct T

-- A::class B vs. class A::B
The latter arises in:

2.6

X3J16/92-00& = WGZ21/NO1W, Page 7

struct A {
struct B {

//-..

} B;

The unadorned A::B refers to the member B, not the struct B. The
question is how to refer to the struct B.

2. Qualified names as declarators. For example,

class A {
int A::f(int);

.
’

is syntactically valid according the the June ‘92 Working Paper.
Should this example be allowed syntactically and semantically?

3. When does an enumerator enter scope? The WG grouped noted
differences in the corresponding wording in the C standard and the
current Working Paper. For example, it might be that:

enum E { red = sizeof(red) };
A A

| red enters scope here in C?
red enters scope here in C++

4. Ongoing correction of typographical errors in the grammar.
C Compatibility WG

Plum reported that the "impressionistic" list of C++ incompatibilities
with C was distributed as email messages x3jl6-compat-44 and -45. This
is the first draft of the addendum requested by SC22 to be included in
the eventual standard. He invited feedback from members and asked them
to respond to the x3jl6-compat reflector.

Plum said the committee voted to add the C lexical grammar to the
Working Paper, but this was not done.- He asked Shopiro to at least add
a footnote to say that the C++’s lexical grammar is supposed to be the
same as C.

Plum intends to propose that the draft use the following "spelled-out"
names for the previously approved type categories:

FT -> function type

COT -> completely-defined object type

IOT -> incompletely-defined object type

Plum said the WG will consider introducing the notion of structural

equivalence for C structs, unions and enums. Schwarz and Vilot said
they opposed complicating the "one-definition" rule any further.

89

X3J16/92-0041 = WG21/N0118, Page 8

Plum said the WG will continue its investigation of the type system.
The Working Paper says the type of a tagless class is a "made-up name".
He said that if they get agreement on adding structural equivalence,
maybe they can leave the Working Paper as is regarding tagless classes.
Regarding the type of a pointer to array of unknown bound, Plum said
that maybe Schwarz is right that we don’t need variables or expressions
of this type.

Plum listed other issues being handled by members of the WG:
-- use of terms "argument" vs. "parameter” (Koch)

-- null pointer constant (Kohlimiller)

-- conformance and diagnostics (Johnson)

Scheduling WG sessions
Working Paper for Draft Proposed Standard

Shopiro presented the editor’s report for the June 92 Working Paper
(92-0079 = NO156). He had promised to change the Working Paper to be
more like an ISO document, but had not. He said he still intended to do
so. He also apologized that a change in the footnoting macros used in
formatting the document produced change bars at each footnoted line,
even though there was no real change.

Shopiro explained that he added a new sentence 11.5p1.3 (section 11.5
paragraph 1 sentence 3) to close a Toophole in protected access.

Several members said they didn’t understand the loophole. Kendall was
confused by what it means "to access an address." Schwarz asked if the
word "address" was defined anywhere. Saks suggested that the new
sentence could be combined with the previous sentence by changing the
"access" to "refer to" and by not enumerating all the ways that a member

could be accessed. Shopiro said he’d take another crack at the
paragraph.

Gibbons noted another problem with that new sentence. Citing 5.3p2, he
said the new 11.5p1.3 does not account for the fact that the type of
&D::f, where f is member inherited from base class B, is ‘‘pointer to
member of B’’, not ‘‘pointer to member of D’’.

O’Riordan said he thought the sentimeat of the change was correct, but
the words needed work. He also noted that the new rule did not address
access to a protected member of an indirect base class.

Saks asked if the statement in 12.4p8.2 that the delete operator "frees
memory" is a requirement, or just wishful thinking. He also noted that
12.4p10.3 uses the word "illegal" when it should say "shall not" or "is
undefined". Plauger said the draft must not say "illegal" because the
standard does not have force of law. He also warned about the use of
"only", because its meaning varies depending on its position in a
sentence. Plum suggested new wording for the entire paragraph:

When a destructor is invoked for an object, the object no longer
exists; if the destructor is explicitly invoked again for the same
object, the behavior is undefined. For example, if the destructor

X3J16/92-0041 = WG21/NO1M, Page 9

for an auto object is explicitly invoked, and the block is
subsequently left in a manner that would ordinarily invoke the
implicit destruction, the behavior is undefined.

Terribile suggested using "In particular" instead of "For example".

Shopiro described his change to require all declarations and the
definition of a function to have identical exception specifications
(15.5p2.1). Scian noted that exception specifications can appear on
pointers to functions. He observed that the change introduced an
inconsistency -- the Working Paper requires consistency in the exception
specification of all declarations and definitions of a function, but not
in declarations of function parameters. For example, given

class C {
void foo(void (*x)() throw (char)) throw (char);

void C::foo(void (*x)() throw (double)) throw (char) { ...)

the Working Paper now requires the exception specifications in the
declaration and definition of C::foo to be the same; however, it does
not require the exception-specifications to be the same for formal
parameter x. 0’Riordan said at the moment exception specifications are
not part of the type. Even though the exception specifications are
syntactically valid on pointers to functions, they have unspecified
semantics in this context, and therefore are not allowed.

Schwarz asked if it’s possible to change an exception specification when
overriding a virtual function. Shopiro said he didn’t know. O‘Riordan
reiterated that the exception specification is not part of the type. He
explained that, years ago, when he, Stroustrup and Koenig were dis-
cussing the exception handling extensions, they considered whether
exception specifications should be part of the type, and Stroustrup
decided they should not. Hence, changing the exception specification
when overriding a virtual function is legal. Schwarz suggested this is
not an editorial issue -- it’s a core_issue.

0’Riordan pointed out that the change -in 7.4p5.5 is substantive. The
statement in the June ‘92 Working Paper is "Otherwise, a function or
object declared in a linkage specification behaves as if it was ex-
plicitly declared extern." (Shopiro had added "or object".) 0’Riordan
said that treating an object declaration as if explicitly declared
extern turns a definition into a declaration. Shopiro said he will
reconsider the change. Scian pointed out that an annotation in the ARM

makes it clear that
extern "C" { int al; }
is a definition of al, and

extern "C" int a2;

is a declaration of a2.

91

X3J16/92-0041 = WG21/N0118, Page 10

Ward noted that the changes in 10.2pl weren’t in Shopiro’s report. (The
changes reflect the relaxation of the rules for the return type of
virtual functions approved at the last meeting.) She asked about the
rule(s) when the return type of the overriding function is a pointer or
reference to a class that is privately or protectedly derived from class
B (where B is as described in 10.2pl.4.) Shopiro suggested that the
Core WG should resolve the issue. Saks said it should go back to the
Extensions WG -- vagaries in extensions are not core issues. Plum asked
Saks what to do about problems in templates and exceptions? Saks said
they should be handled by the Extensions WG also.

Stone questioned the meaning of 9.2.1pl1 item number 3. O0’Riordan said
that when Core WG discussed that rule, they intended it to describe the
effect of lexical reordering on the types of the declarators, but not
the effect on run-time behavior implied by the order of declaration.
But the words don’t clearly reflect that intent.

The committee debated approving the Working Paper as is, or explicitly
noting the errors in the motion to accept the document. Waggoner
offered to draft a motion for a vote on Friday. Saks explained that the
drafting conmittee meets Thurday evening to draft motions, to be copied
and distributed before voting on Friday morning.

Rationale '
No discussion.

WG sessions

Before recessing to working groups, Lenokv asked the groups to designate
scribes. The volunteers were: Extensions: O’Riordan, Core: Pennello,

Libraries: Schwarz, Environments: Ward, Compatibility: Koch, Syntax:
Krohn A

Lenkov closed the committee of the whole.

The committee recessed to working groups at 15:45 and reconvened at 08:35 on
Wednesday. S

WG progress reports

WG sessions

After brief status reports, the committee recessed to working groups at 08:40
and reconvened on Thursday at 08:35.

General Session

Lenkov opened the committee of the whole.

=== Core Language ===

AQUIU/JC-UUR = WuCli/NULIES, rage Ll

Pennello presented the WG’s proposal on friend declarations. The
problem the group sought to solve is: If a name mentioned in a friend
declaration is not declared, where does that name get declared? He
added that if the name is already declared, there is no problem to
solve.

Pennello said the aforementioned problem does not include declarations
like:

class T *p;

Here, if T is already declared, this declaration uses that 7. If not,
this declaration inserts a declaration for 7 in the current scope.
Schwarz disagreed that all compilers behave this way -- that some inject
a declaration for T into the enclosing scope.

Pennello also explained that the problem addressed by the WG did not
include declarations like:

~class S;

which,'if S is not. declared previously, always injects S into the
current scope.

Pennello enumerated the WG's guiding principles for friends:

-- Use the same name injection principles for both friend classes and
friend functions.

-- Avoid injecting names into a class scope. (The WG didn’t want to
have a friend declaration inject a name into an enclosing class,
especially if that name names a function. Would it introduce a
member?)

-- Maintain compatibility with existing code at file scope level.

-- Use existing wording in the ARM whenever possible.

Pennello reviewed what the ARM says; in each case it is identical to the
wording in the June ‘92 Working Paper.

[A] ARM section 9.1, page 168: "If a tlass mentioned as a friend has not
been declared, its name is entered in the same scope as [that in
which] the name of the class containing the friend declaration [was
entered]."

Pennello said the wording is inaccurate and he added the bracketed
text to clarify his presentation. In short, the rule says "A friend
class introduces a name in the same scope as that containing the
parent class."

ARM 11.4, page 250: "If a class or a function mentioned as a
friend..." '

Pennello said this sentence is identical to the rule on page 168,
except it mentions functions as well.

93

X3J16/92-0041 = WG21/N0118, Page 12

[B] ARM 11.4, page 251: "A function first declared in a friend
declaration is equivalent to an extern declaration."

[C] ARM 9.7, page 188 [annotation]: An example illustrates a function g
declared two class levels deep referring to a global function.
Thus, the function is moved out to the global level to make it
extern, adhering to [B]. We might conclude from this example that
"a friend function is declared in the nearest enclosing non-class
scope”.

[D] ARM 3.2, page 15: "A name first declared by a friend declaration
belongs to the global scope."”

Pennello said the WG suspected [D] was supposed to be the same as
[A] but was inadvertently not edited.

Pennello said the WG spent several hours discussing various name

injection methods. Most of the methods clashed with the above princi-
ples, and the WG dispatched them quickly. Pennello presented the two
survivors, noting that the WG had a preference for one over the other:

[G] inject the name in the global scope
[N] inject the name in the nearest non-class scope
Without nested classes and local classes, these are the same.

Stroustrup asked why did the WG rejected injection one level up (into
whatever scope). Pennello said he didn’t want to inject a name into an
unsuspecting class (as stated in the first principle, above).
Stroustrup asked if the WG had considered injecting names into the
enclosing scope, but with a constraint against injecting into a class.
Pennello said doing so would break the example on page 188 of ARM.

Pennello gave the following example to show the difference between [G]
and [N], above:

void f() {
class A { R
friend class B; //1
static int x;

c%ass B {
void g() { A::x; } //2

.
’

class B {
void g() { 72?22)

.
?

X3J16/92-008 = WG21/NO18B, Page 13

Under [G], //1 injects class B into the global scope, and the injected
declaration resolves to the global class B. But the global class B
can’t make any use of the members of A. Thus [G] makes little sense,
and [N] is preferable. [N] makes the local class B a friend, and
permits the reference to A::x in //2.

Pennello said the WG wondered that, if [G] was supposed to be the rule,
why does the ARM say [A]? It would have been much simpler to just write
what was written in [D] in the ARM.

Pennello gave the following example to illustrate ARM rule [B], above,
which says that friend function declarations are equivalent to extern
declarations:

void f() {
extern g(); //3
class A {

friend g(); //4

}

Here the friend g-in //4 is clearly a reference of the extern g in //3.
Furthermore, unlike in early and perhaps even current C compilers, g is
not available in the global scope. Thus if you delete //3, the WG
prefers that //4 inject a declaration of g into f’s scope, not into the
global scope.

Pennello said the WG felt that [N] has several advantages over [G]:

-- [G] makes little sense when dealing with local classes

-- Why was the wording of [A] so involved when [G] can be stated
simply?

-- [N] prevents injecting function declarations past functions and is
consistent with having local extern functions. :

Thus, the WG recommended [N].

0‘Riordan presented the following examples to demonstrate his concerns
about friend functions in local c]assgs:

int f() {
class X {
friend int g();
}s

)

Here there’s no way to define g outside f. Another example:

95

X3J16/92-0041 = WG21/N0118, Page 14

int x() {
class T
} friend int g() { T at; /* ... */)

int y() {
class T {

} friend int g() {'? }

Here, the gs are the same function. O0’Riordan wondered that, if both gs
are defined inline, how do you honor the one-definition rule while still
making use of the friendship privileges? Yet another example:

int p() {
class S

friend int p() { ... }

b

)

0’Riordan exp]ainéd that the only function that can be a friend of a

local class is the function enclosing the local class. But this is of
Timited utility.

0’Riordan’s point was that you can’t do anything with a friend function
declared in a local class. Lajoie suggested continuing with the dis-
cussion of friend injection, and then reconsidering the utility of
friend functions in local classes at a later time.

Pennello noted that the injection rules interact with the recently
accepted name lookup rules. He added that the interaction is harmless,

and there’s always a way to get the desired effect. He gave this
example:

class A {
friend class B; //1
}s

class B { //2
}s

This is legal, and the B declared on //1 refers to the B defined on
//2. When you put classes A and B inside a class C:

class C {
class A {
friend class B; //1

}s
c1as§ B (//2

-
?

X3J16/92-008 = WG21/NO1BB, Page 15

- the name B is injected before the C (under either possible injection
rule [G] or [N]). As such, C::B is not the friend, and the example is
as if you had written:

class B; //1
class C {
class A { /2
friend class B; //3
}s
class B { //4

?
-
?

Pennello explained that now you run afoul of the new name lookup rules.
The B on //3 first refers to the B on //1, then later refers to the B8 on
//4 after reconsideration (rule 2 of name lookup). This is an error.
But to get the desired effect, simply insert:

class B;
before //2.

Lajoie showed there is already precedent for using forward declarations
to introduce names into the proper scope. She gave this example:

class Y; //1
class X {

class Y *p; //2
ciass Y {

class X *q;

}s
Without //1, //2 declares Y as X::Y, which never gets completed.
Stroustrup said his intent was that friend functions and friend classes
should be subject to the same injection ruies. He also said his intent
(not yet achieved) was that injection®rules for friends should be the
same as the rule for the name Y in

class Y *p;
He suggested this would allow Lajoie’s example, even with //1 omitted.
Kendall asked Stroustrup what his intent was for:

void f(struct S *p); //1

struct S *q; //2

Kendall added that it’s not clear whether S in //2 refers to S in //1.

97

aR

X3J16/92-0041 = WG21/N0118, Page 16

Plum explained that in C, //2 does not refer to //1. He added that this
was not a conscious decision by the C committee, but fell out from other
rules. C users complained when they discovered this. Plum said we

might get similar flak if we take the same pedantic approach to Lajoie’s
example.

Lajoie asked for clarification of Stroustrup’s intent that injection
rules for friends should be the same as the rule for the name Y in

class Y *p;
She gave this example:

“class C {
class X {
class Y *p;

ciass Y {
class X *q;
}s

}s

and asked where he‘intended Y to be introduced. He said it injects Y
into the scope containing C. Pennello noted it becomes illegal on name
lookup grounds, as in the friend example above.

Stroustrup said he preferred there be no injection rules. But, if you
don’t have them, you break every C and C++ program ever written.
Gibbons suggested making injection an anachronism.

Straw vote: Who prefers rule [G] for friend declarations? 1. Who
prefers [N]? lots.

Clamage presented his proposal for making wchar_t a distinct type for
overloading, a modification of his and Schwarz’s earlier proposal
(92-0047 = NO124). He presented this sample code:

int 1i;

wchar_t w;

cout << i; //1
cout << w; //2
int foo(int); //3

int foo(wchar_t); //8

He explained that in C and in C++ as described by the June ’92 Working
Paper, wchar_t is a typedef defined to be one of the other integral
types. He would like to be able to define the iostream library so that
//1 and //2 invoke distinct functions on all implementations. He would
also like the function declarations on //3 and //4 to be valid over-
loadings on all implementations. But, the Working Paper provides
neither capability.

3S
X3J16/92-004 = WG21/NOIE., Page 17

He proposed to solve the problem as follows: Make wchar_t a distinct
type implemented the same as one of the standard integral types, i.e.,
with the same number of bits and signedness as one of these types. In
contrast to his original proposal, he proposed making wchar_t a keyword,
rather than a reserved word. (The other details of the proposal are
Tisted in the motion presented on Friday. See agenda item 10.)

Gray asked what is result tybe of adding 1 to a wchar_t expression.
Clamage said it’s the promoted type. Gibbons asked if a wchar_t can
have an explicit signed or unsigned modifier. Clamage said no.

Plum said this proposal doesn’t say what happens what you convert from
an integral type into wchar_t. O’Riordan replied that the intent was
for conversion to wchar_t should be a standard conversion, not a
promotion, so it’s more “expensive".

Pennello asked Clamage about the following potential ambiguity:
f(short), f(int);

%iéhort-expr);
f(wchar-expr);-

He noted that if wchar_t is represented as int, then f(wchar-expr) calls
f(int). Otherwise, it’s ambiguous. Several members noted that this
sort of implementation dependency in overload resolution is not new, and
is documented in the ARM.

Gray asked if a bit-field can have type wchar_t. Clamage answered that
if a bit-field can have an integral type, then a bit-field can be
wchar_t.

Pennello reiterated his concern that wchar_t is either promoted to int,
or converted to int, depending on the implementation.

Straw vote: Who favors Clamage’s proposal: lots yes, 5 no, 3 abstain.
=== Extensions ===

Stroustrup reported that the WG worked on:
-- ~const

-~ operator new[]()

-- run-time type identification

-- default arguments everywhere

-- overloading based on enumerations

He also listed the backlog of proposals for consideration:
-- restricted pointers

-- name space control

-- operator.()

-- templates

-- extended character set

-- member initializers

-- return type of virtuals

99

10n

X3J16/92-0041 = WG21/NO118, Page 18

Shopiro presented the ~const proposal (from Thomas Ngo). The goals are:
-- to make "casting away const" unnecessary

-- to allow a more declarative programming style with respect to const
-- to allow a stronger definition of constness in the standard

-- to allow certain compiler optimization

Shopiro explained the difference between bitwise (concrete, physical)
and meaningwise (abstract, logical) const using the following example of
a class for complex numbers:

class complex {

double re;

double im;

double abs;
public:

double abs_val() const;
}s

const complex c;
c.abs_val();

- Suppose you would iike to be able to compute the absolute value for

const objects like ¢, so you declare abs_val as a const member

function. But, suppose computing abs_val is expensive, so you write the
function to compute the value and tuck it away (in the abs data member)
for the next call. Inside abs_val, you must "cast away" the constness
of the object referenced by this so you can alter the abs member. c is
"meaningwise" const in that it appears to be const to the user, although
its representation changes over time.

Shopiro added that bitwise constness does not imply meaningwise
constness, and vice versa.

Shopiro listed the "hoped-for" advantages of bitwise constness:
-- only bitwise const objects are ROMable
-- bitwise constness enables certain compiler optimizations

Shopiro also listed the "hoped-for" ad&antages of meaningwise constness:
-- it supports declarative, high-level programming

Shopiro said the current Working Paper approach favors meaningwise
constness, but tries to support both forms of constness using two kinds
of classes -- those that are ROMable, and those that are not. If a
class is ROMable, then declaring an object of that type const implies
it’s bitwise const. If a class is non-ROMable, then declaring an object
of that type const implies it’s meaningwise const, and so casting away
const "works". That is, the object behaves exactly as if it were never
declared const.

£] X]
X3J16/92-004 = WG21/NO1E, Page 19

Shopiro explained that the Working Paper currently makes no distinction
between casting away const inside or outside a member function. He said
we might like to make this distinction because a meaningwise const
member function often needs to change the object. But, outside a member
function, casting away const is suspect.

Shopiro presented three alternative approaches to "casting away const":
. leave things as they are now

2. "object const" -- The notion of constness depends on how an object
is created. You can cast away const from a pointer (or reference)
only if it really points (refers) to a non-const object.

3. "pointer const" -- Casting away constness is always undefined, no
matter what the pointer points to or reference refers to. (This is
needed for optimization.)

He said the WG preferred (2).

Although the WG has not decided on a syntax for ~const, he used this
example to illustrate the ideas:

class complex {

double re;

double im;-

double abs ~const; // ~const data member
public:

double abs_val() ~const; // ~const function member

.
b

He said the WG considered different semantics for ~const:

1. ~const data only -- you may declare class objects const, but even in
a const object, a ~const field is not const.

2. ~const data and function "union® -- same a (1), plus a ~const member
function can change any data member, even if the object is const.
(This implies non-ROMability.)

3. ~const data and function "intersection" -- a data member must be
~const, and it can only be changed by ~const member function.

The WG did not have preference for any one of these three.

Shopiro emphasized that the WG was not up to deciding on syntax. They
were still deciding on the semantics, or even to reject the extension
altogether.

Clamage asked if the WG considered the impact of this extension on
storage layout rules. Shopiro said no.

Stroustrup summarized the proposal to add operator new and operator
delete for arrays (92-0055 = NO131). He summarized the reasons for the
proposed extension:

-- users write expressions like new x[7], i.e., they allocate arrays of
class objects.

-- defining ::operator new can cause trouble because it has to handle

everything (not only different size objects, but arrays as well as
scalars).

Stroustrup summarized the open issues:

101

102

X3J16/92-0041 = WG21/N0118, Page 20

-- The proposal suggests the notation operator new[]() and operator
delete[](), but the WG had not settlied on the syntax.

-- Does new x[20][35] use the array operator new for x or for x[20]?
The WG leaned toward treating new x[20][35] as new x[20*35]. (This
means you can use x::new[]() for what appears to be a multi-
dimensional array.)

-- Does operator new[]() need an argument specifying the number of
array elements? '

The primary reason the WG did not propose a vote at this meeting was
that they were unable to decide on the last item. Stroustrup explained
that some people needed more time to verify they didn’t need this
information in a call.

Stroustrup then reviewed the work on run-time type identification

(92-0068 = N0145). The WG favored keeping type_info minimal. At the

very least, type_info needs:

-- operator ==

-- name(): returns a name string

-- an ordering relationship

-- an operator to access extended type information (if extended type
information exists)

Stroustrup said providing standard extended type information is still an

open question:

-- can it support object i/0?

-- can it represent the declaration source? In other words, can you
ask every question about a type?

-- anything else?

Stroustrup said the WG discussed templates with respect to run-time type
identification. They agreed to allow typeid(T) where 7 is a non-
polymorphic type (i.e. where T has no virtual functions). They also
agreed there should be no special rules for type expressions that can be
evaluated at compile time.

Stroustrup gave this example:

template <class T> void f(T a)

if (typeid(T) == typeid(int)) { //1
at++; /12

} else i..

)

The expression a++ on //2 won’t compile for an arbitrary type 7. For
this example to compile for all types 7, the compiler must suppress
further syntactic and semantic analysis once it determines that the
condition on //1 is false. Stroustrup said he thought the June ‘92

J(2 Ss
X3J16/92-00@ = WG21/NO1®8, Page 21

Working Paper says that the compiler must do syntactic and semantic
analysis even if it knows the condition is false. The WG decided they
don’t want to change that rule.

Stroustrup presented alternative syntax considered for checked casts:

ptr_cast(D *, p)
(virtual D *)p
2(D *)p
checked<D *>(p)
The WG favored the last one.

Stroustrup said some people strongly oppose "cryptic" character
combinations, like (? ...). The most common mistake in using (? ...) is
to leave out the ’?’, inadvertently writing an unconditional cast.

Stroustrup will continue exploring the use of function templates to
support run-time type identification:

1. check<T>(v): examine v
-- return 0 or throw something
-- compile-time error if you can’t examine v

2. coerce%T>(v): make a 7 out of a v
-- T may be an incomplete type
-- operation may reinterpret bits

3. convert<T>(v): apply a well-defined conversion
-- T may not be an incomplete type
-- compile-time error if conversion doesn’t exist

Stroustrup suggested we might be able to deprecate the (T)v and T(v)
notations for casts. Clamage said we can’t deprecate T(v) because it’s
also the syntax for constructor calls.

Stroustrup summarized the WG members’ work assignments:

-- ~const: Knuttila, Bruck, and Schwarz

-- operator new[](): Sloane, Gibbons™

-- run-time type identification: Kiefer, Sloane

-- default arguments everywhere: Knuttila (write a rejection .letter)
-- overloading based on enumerations: Bruck (coming right up)

Bruck presented his proposal to allow overloading of operators based on
enumerations (91-0139 = N0072, with additional comments in 92-0070 =

NO147). He explained the motivation for the proposal with the following
example. Given:

enum status { bad, awful, hopeless };

f(int);
f(status);

103

X3J16/92-0041 = WG21/N0118, Page 22

then the call f(bad) calls f(status), but f(bad|awful) calls f(int),
because bad|awful is an expression of type int. That is, you can
overload function f, but calling an f with an expression involving enums
is a "pitfall” because it always invokes f(int).

Bruck also explained that the current Working Paper does not allow
operator overloading as in:

enum season { winter, spring, summer, fall };
season operator++(season s)
switch (s)
{

case winter: return spring;
case spring: return summer;
case summer: return fall;
case fall : return winter;
}

}

Bruck explained that the proposal preserves an important objective of
C++, namely, not to change operations on built-in types. He said that
old C++ treated enums as a kind of int. Consequently, there was an
implicit conversion from int to enum. As a consequence of that, if you
allowed overloaded operations based on enums, it would be possible to
redefine operations on ints, thus violating the objective. In current
C++, each enum is a distinct type, so there’s no implicit conversion
from int to enum. Thus you can’t define operations on int. Therefore,
the WG proposed making overicading on enums legal.

Bruck said the essence of the proposal was to allow operator overloading
on all user-defined types. He also said the proposal is not intended to
make enums a "lightweight" class, i.e., not to allow any of the follow-
ing for enums: derivation, constructors, member functions, assignment
operators, or conversion operators.

Bruck provided an "impact statement" based on 0’Riordan’s experience in
implementing this extension in Microsoft’s C++ compiler:

-- it’s trivial to implement

-- there’s no interaction with the existing language)

Also, the proposed feature has no direct impact on existing code -- you
must decide to use the new feature.

Bruck said the WG considered alternative approaches:
1. Enums are useless, so we shouldn’t care. Just leave things alone.
2. Use a class instead:
-- it’s more work
-- it’s less efficient :
-- you can’t have constants (for use in case labels, etc.)
3. Fake enums with templates (as described in 92-0070 = NO147):
-- it works (sort of) '
-- you can’t have constants (for use in case labels, etc.)
-- it’s not efficient

X3J16/92-008 = WG21/NO1M®, Page 23

-- it leaves the domain of enumerators undefined (you can create
new symbolic values for enumerators at runtime) .

Bruck noted a positive side-effect of proposal: You can make certain

operations on enums illegal. For example, if you want summer+winter to
be an error, then either:

1. Declare but don’t define operator+(season). This yields a link-time
error if you try to call it.

2. Return a magic class, such as
class BadOp { ~BadOp(); } // private destructor .
Returning an object with a private destructor is not possible, so
BadOp operator+(season, season);
causes a compile-time error as soon as it’s used.

Bruck gave specific wording for the proposal. (See the wording of
motion under agenda item 10.)

Bruck reported that the WG found a related problem with the existing
specification for enums. Given:

enum openmode { in = 1, out = 2, ate = 4, bin = 8 };
openmode m = (openmode)(out | in);

then the value of m is not one of the declared enumerator values.
Further, if m were initialized with

openmode m = (openmode)(ate | bin);

then its value is completely outside the range of enumerators. nm is,
however, within the "bit size" of type openmode.

Bruck said this coding technique is common in existing code. He sug-

gested we should formalize this practice within the type system. The

Extensions WG wanted to hand the issue to the C Compatibility and Core
WGs for resolution.

Straw vote: Who favors this proposal: lots yes, 0 no, 5 abstain.
=== [ibraries ===

Vilot presented the WG's latest thinking on the proposed language
support Tibrary (92-0043 = N0120). He said the WG explored alternatives

for what ::operator new should do if it fails to allocate storage:
I. return null [0]

2. throw xalloc [13]
3. either or both of the above [3.5]

Tﬁe numbers in brackets indicate the number of WG members who preferred
that alternative. :

105

1Na

X3J16/92-0041 = WG21/N0118, Page 24

The WG also tonsidered whether the type of a new handler function should

be void (*)() or int(*)(). They also considered omitting new handlers
from the library entirely.

Vilot said the WG agreed that ::operator new(size_t, void *) should be
reserved, but that ::operator new(size_t) and ::operator delete should
not. However, if defined by the user, they must have external Tinkage.

Vilot reported that WG spent much time on internationalization as it
affects the string library. He also presented a rough classification of

the types of strings in the C Tlibrary and what to expect in the C++
library:

Representation "C" facilities Class facilities
individual bit unsigned, operator bits, bit_string
bytes mem*()
chars str*(), strn*() } string
chars w/ locales strcoll(), strxfrm() /
wchar_t . wstr*(), wc*() wstring

(mb*()) (encode/decode)

Vilot briefly summarized the WG’s progress on i/o0. Again, much the
discussion focused on the impact of internationalization.

Vilot said the WG discussed Plum’s localedef proposal (92-0049 =
NO126). They agreed that for now, WG20 is handling the issue. Plauger
will draft a letter from WG21 to WG20 expressing concern that the work
of WG20 remain compatible with C and C++.

Vilot said the WG had a brief discussion on the dynamic array proposal
(92-0046 = NO123). Some in the WG suggested the proposed class is too
small to be useful, and should be dropped. The WG also discussed
abandoning operator[] because it might return a dangling reference.
They considered making operator[] return an object of a “helper class",
as described by Coplien in his "Advanced C++ Programming Styles and
Idioms". Vilot noted this was a trade between safety and efficiency.

Returning ::operator new, Vilot explained that the WG leaned ﬁeavi]y
toward requiring that it throw an xalloc exception when the allocation
fails, and that it never return null. He asked for the committee’s
reaction.

0’Riordan said if you require the standard ::operator new to throw an
xalloc, you must either:

1. write everything to handle user-defined new’s that return nulls, or
2. require all user-defined new’s to throw xalloc.

He thought it would be difficult to specify the corresponding "contract"
between the implementation and the programmer.

75 5§
X3J16/92-00& = WG21/NO1B, Page 25

Saks replied that it’s no easier to specify the requirements on the
implementation and the programmer if you require that new return null
than it is to specify the requirements when new throws an xalloc.

Koch questioned the restriction that user-defined new must be extern.

Vilot said that the WG didn’t want to have to check everywhere that new
might return null.

O’Riordan gave an example to defend returning null. Some users attempt
to allocate a whole bunch of blocks they may not use immediately, then
check if they got the block(s), when and if they actually need them.
These users will need to write try blocks around each allocation, and
map the xalloc exceptions into pointers whose values are null.

Bruck said he favored having new throw xalloc. If the constructor in a
new expression throws an exception, users must write try blocks anyway.

Gibbons noted an efficiency consideration. Many implementations insert
calls to operator new in constructors. If operator new might return 0,
these constructors must check the return value. With inline construc-
tors and low overhead objects, the amount of code space wasted on these
checks might be large. He said it’s a minor consideration, but worth
noting.

Gray said he had a vague concern about operator new using exceptions.
If new might throw xalloc and never returns null, users will be forced
to have exception handling constructs in their programs. Clamage
replied that there are alternatives that avoid exceptions:

-- supply your own operator new that doesn’t throw an exception, or
-- use malloc, and new expressions with placement to avoid exceptions.

0’Riordan said the overhead of catching exceptions is much greater than
testing for null, and would result in inefficient programs.

Straw vote: Who wants new to throw xalloc if it fails to allocate
storage, and never return null? lots yes, 4 no, 8 abstain.

=== Syntax ===

Roskind presented the following grammar rules from the current Working
Paper: .

class-name:
identifijer //1
elaborated-type-specifier:
class-key identifier //2
class-key class-name //3
enum enum-name

He explained that since rule //1 says a class-name is an identifier,

rule //3 is sufficient and //2 is redundant. He asked the committee to
consider removing the redundant rule.

107

10R

X3J16/92-0041 = WG21/N0O118, Page 26

Vilot pointed out that the identifier in //2 becomes a class-name after
it has been declared as a class.

Straw vote: Who favors removing the redundant grammar rule? 17 yes, 9
no, 15 abstain.

Lenkov said the vote wasn’t clearly in favor of the proposal because so
many abstained. Bruck said he’d invoke the two-week rule if this
proposal came to a formal vote.

Roskind alternatively proposed several additions to the grammar:

elaborate-type-specifier:
enum identifier
class-key enum-name
enum class-name
class-key typedef-name
enum typedef-name

The idea is that after enum or class-key, you can have anything that
Tooks Tike an identifier, including (from 18.1pl) class-name, enum-name,
typedef-name, and of course, identifier itself. Therefore, if we don’t
take the short way out and assume people know that identifier in this
context means all those identifier-1like things, then we have to take the

long way and explicitly mention all the combinations. The complete
(sorted) list is:

elaborated-type-specifier:
class-key class-name
class-key enum-name // new
class-key identifier
class-key typedef-name // new

enum class-name // new
enum enum-name

enum identifier // new
enum typedef-name // new

The WG also agreed to include

class-key template-name
enum template-name

though that requires adding template-name to the grammar.

During the ensuing discussing, someone suggested writing the grammar
something like

5 >s
X3J16/92-00é = WG21/NO1¥, Page 27

- elaborated-type-specifier:
class-key identifier-thingie
enum identifier-thingie

identifier-thingie:
class-name
enum-name
identifier
typedef-name

Several committee members expressed their desire to keep the grammar as
small as possible.

Straw vote: Who favors adding the proposed new grammar rules: lots no.

Roskind explained that C++ has no notation for referring to the name of
a nested class or struct hidden by a class member of the same name. He
began with a simple example showing the need for elaborated names.
Given

struct S { int a; } S;

since § refers to-an object, you must use struct S to refer to the
type-name.

Now, suppose you write

struct outer {
struct inner {
int a;
} inner;
} outer;

How do you refer to the 7nner as a typedef-name? The problem is that
the data member 7nner hides the type member inner. The WG presented the
committee with three alternatives for accessing type inner within outer:

1. struct outer::inner
2. outer::struct inner
3. no new syntax

Roskind explained that (1) and (2) are new syntax, and not permitted by
the June 92 Working Paper. Thus, if the committee chooses (3) there
remains no way to refer to inner as a type member of outer. Roskind
also noted that the Borland and MetaWare C++ compilers currently support
notation (1).

Pennello (from MetaWare) explained that if you choose (2), you allow
struct x::struct y::struct z. Choosing (1) means you only allow the one
occurrence of struct at the beginning, and’ it applies to z.

Straw vote: Who favors no change: 5 yes, lots no, 5 abstain.
Straw Vote: Who favors (1)? lots yes, 0 no.

Krohn will write an analysis of this issue.

109

X3J16/92-0041 = WG21/NO118, Page 28

=== C Compatibility ===

Plum presented the following proposal: Treat C’s "structure compati-
bility" rules as pragmatic layout requirements, but don’t add any
complications to the "one-definition rule" for type agreement.

He said the introduction to Chapter 9 of the Working Paper contains
these words:

The mechanisms for controlling the layout of class objects, for
conforming to externally imposed formats, and for maintaining
compatibility with C layouts (structs, unions, and bit-fields) are
presented.

He suggested adding these words to 8.4.1pl10 (Aggregates):

A C-struct is an aggregate which is declared struct and contains no
references, and contains no pointers to members. (Thus, its
definition is valid in C.)

A C-union is an aggregate which is declared union and contains no
references, and contains no pointers to members. (Thus, its
definition is valid in C.)

He noted these additions are similar to words in 17.4.1.5p4.

Several members suggested adding or removing features from "C-struct".
Stroustrup suggested calling "C-struct” something else that did not
convey the impression that the proposed struct layout rules were only
for compatibility with C. Saks urged defining a C-struct "bottom up"
through the type system. He also said that "C-struct" is the right
name, because the purpose of Plum’s proposal is to preserve compat-
ibility with C. Vilot agreed with Saks about defining C-struct through
the type system, but disagreed that we should limit our concerns to C
compatibility. Stroustrup elaborated on his reason for wanting a name
other than C-struct -- much of the email he receives is from people who
want their C++ to communicate with Fortran.

Plum presented new words he proposed fo add to the Working Paper in
9.2p7:

1. If two types 71 and 72 are the same type, then 7I and T2 are
layout-compatible types.

2. Two C-struct types are layout-compatible if they have the same
number of members, and corresponding members (in order) have
layout-compatible types.

3. Two C-union types are layout-compatible if they have the same number
of members, and corresponding members (in any order) have layout-
compatible types. :

10 ss”
X3J16/92-008 = WG21/NO1M8, Page 29

4. Two enumeration types are layout-compatible if they have the same
sets of enumerator values.

5. If a C-union contains several C-structs that share a common initial
sequence, and if the C-union object currently contains one of these
C-structs, it is permitted to inspect the common initial part of any
of them. Two C-structs share a common initial sequence if corres-
ponding members have layout-compatible types (and, for bit-fields,
the same widths) for a sequence of one or more initial members.

Shopiro wanted greater control over storage layout. Plum reminded the
committee that the WG’s charter is simply to provide behavior for C
source compiled as C++.

6. A pointer to a C-struct object, suitably converted, points to its
initial member (or if that member is a bit-field, then to the unit
in which it resides) and vice versa. There may therefore be unnamed
padding within a C-struct object, but not at its beginning, as
necessary to achieve appropriate alignment.

Schwarz said he’d 1ike to see an analysis of whether this affects the
legality of any C++ program. ,
Plum asked if anyone representing a vendor knew reasons why a C++
compiler would want to lay out C-structs and C-unions differently that
they would in C? Shopiro said he didn’t know of any.

Vilot asked if we can have a type system and structural equivalence in
the same language. Stroustrup said no, but we can have layout require-
ments outside the type system.

Straw Vote:

Who thinks this a good proposal, except maybe for the terminology? 21.
Who thinks it needs more work? 6.

Who thinks it’s not right at ali? 0.

Who thinks it’s none of the above? 11

Knuttila questioned the merits of Plum’s rules § and 6. He said his
compiler doesn’t implement them because they hurt code generation. He
wanted to see what class of C++ programs this supports.

Schwarz expressed concern over the impact of the proposal on the type
system. He said rule 6 makes some previously invalid conversions
valid. For example, rule 6 permits converting a pointer to a struct
beginning with 7nt into a pointer to int. Saks said he didn’t see how
layout compatibility hooks into the type system to permit conversions
that previously were not allowed.

=== Editorial ===
Waggoner presented wording for a motion to approve the Working Paper. .
That motion specifically excluded approval for the phrase "or object" in

7.4p5.5. 0’Riordan, who had noted the problem in that sentence on
Monday, said he thought the problem was not just "or object" (which -

"

X3J16/92-0041 = WG21/N0118, Page 30

Shopiro had added), but the whole sentence. He suggested just approving
the entire Working Paper, and noting an action item for Shopiro to fix
the sentence. No one objected.

Environments ===

Stone discussed the WG’s latest ideas on the order of static initiali-
zation. The WG consolidated Kearns’ proposals 1 through 4 (91-0137 =
N0070) into the following "phases" of initialization for static objects
within a single translation unit:

0. "Zero" -- A1l fundamental objects, pointers, and member pointers,
including those inside class objects and aggregates, are set to zero
cast to the appropriate type.

1. "Constant" -- A11 fundamental objects, pointers, member pointers,
and references, including those inside class objects and aggregates
with constant expression[*] initializers are initialized.

2. "Run-time" -- Within each translation unit all objects initialized
with non-constant expressions{*] or with a constructor are
initialized in definition order. The elements of an array are
initialized in order of increasing subscripts, and members of a
class are initialized in order of declaration.

[*] The June ‘92 Working Paper defines constant expressions to exclude
floating constants and addresses.

These proposed phases leave the order of initialization between
translation units unspecified.

Koch presented this example:
extern int x;

int y=x+2;
int x = 10;

and explained that performing the phases as if they were distinct steps
in order initializes y with 12.

Becker wanted to be sure the phases afe described "as if" they occurred
in this order, not that they actually happen in this order.

Rabinov wondered if a class with an inline constructor would be
initialized in phase 1 or 2. O0’Riordan said he thought the current
definition of constant expression does not treat constructor calls as
constant expressions even if inlined.

Koch wondered if these phases reflect existing practice. 0’Riordan
replied that current implementations typically perform phases 0 and 1
when loading the program, then phase 2 at the start of execution. Swan
said the sections of the Working Paper (8.4 and 12.6) that describe
static initialization don’t say so explicitly.

7S >
X3J16/92-004 = WG21/NO1®, Page 31

Chapin said the phases were meant to describe what is commonly done in
most implementations, as well as clarify the draft. O0’Riordan agreed
that these phases described existing practice.

Roskind encouraged Koch to poll the vendors in the room to see if these
phases indeed reflect existing practice.

Shopiro suggested we had the option to declare a collection of programs
that nobody ever writes to have undefined behavior, and by so doing,
give vendors freedom to choose among a variety of implementation
techniques. He cautioned that specifying defined behavior for all
programs no matter how weird they are constrains vendors substantially.

Charney asked for rules that specify static initialization order across
source files. Stone said the WG deferred that issue. He added that he
saw no way to guarantee the ordering unless the programmer can specify
it explicitly, but that requires a language extension.

Saks agreed with Roskind -- that the WG should take this opportunity to
assess what existing practice really is. He added that defining
heretofore undefined behavior may impose a burden on implementors, but
leaving the initialization order unspecified places a greater burden on
programmers trying to write portable code.

Yaker suggested that polling vendors about existing practice should be
done over the e-mail reflector.

0’Riordan asked how demand load libraries fit into the proposed static

initialization phases. Koch said the phases do not cover demand load
libraries.

O‘Riordan noted that phases 0 and 1 omit any mention of static objects
appearing inside functions. Koch said the WG deferred this issue.

Straw vote: Who approves of the general direction taken by the
Environments WG? lots yes.

Recessed at 6:10 Thursday and reconvened at’ 8:30 Friday.

10

General Session

=== Environments ===

Chapin said the WG was considering another strategy for static initial-

ization within a translation unit:

-- Initialize each static object in order as it appears in the source.

-- The value of a static initialization expression that refers to an
uninitialized object is undefined.

Chapin used Koch’s example from Thursday:

113

111

X3J16/92-0041 = WG21/N0118, Page 32

extern int x;
inty=x+2;//1
int x = 10;

Under this alternative initialization strategy, x referenced on //1 is
not initialized yet, so the value of y is undefined. Chapin said this
strategy allows imp1ementors the freedom to initialize constants first.

Chapin gave another illustrating the difference between the
initialization phases and "in order" initialization:

int b[] = (b[1], 100, b[0]};

Using the initialization phases you get:

step 0: int b[] = {0, 0, 0};

step 1: int b[] = {0, 100, 0};

step 2: int b{] = {100, 100, 0};
int b[] = {100, 100, 100);

With "in order" initialization, the result is undefined.

Chapin said the WG also discussed the order of static initialization
among translation units. They considered three possibilities:

1. Make the compiler determine the order, via static analysis

2. Do initialization on demand, via dynamic analysis

3. Let the programmer specify the order

The WG thought (1) asked too much of compiler writers and (2) required
too much run-time overhead. So the WG leaned toward an extension to
allow programmers to specify the order of initialization across
translation units.

Chapin presented this example of one possible language extension:

// header.h
after "modl"
extern void f();

// main.c - application code
#include "header.h"

// f() called in a static constructor somewhere here...

main() { ...}

¥ ST
X3J16/92-00@ = WG21/NO1M, Page 33

// modl.c - library code
name "modl"
#include "header.h"

T obj; // obj must be initialized before calling f()
void f()
{

}}.use obj;
j..
Here, static initialization in the module containing
name "modl"
must be done before the static initialization in the module containing
after "modl"

Vilot noted this feature is similar to that being considered by the
Extensions WG for name-space control. Chapin said the Environments W§
should consider working with the Extensions WG on this.

Chapin said the proposal in 91-0073 about the one-definition rule (ODR)
is "almost right". The document needs some statement to the effect that
"two definitions in separate translation units are not the same unless
they are token identical.” He gave this example:

/* filel.c */

struct X {
int member;
}s

/* file2.c */

typedef int T;
struct X {

T member;
}s

Chapin said this code violates the ODR because the structs are not token
identical. However, this is perfectly legal C. Becker observed that
this problem arises much more frequently in using templates.

Chapin briefly described some other issues in enforcing the ODR for
templates. Shopiro suggested that the discussion of the ODR for

templates should continue on both the Environments and Extensions email
reflectors.

115

116

X3J16/92-0041 = WG21/N0118, Page 34

=== Drafting Committee ===

Saks presented the motions drafted by the drafting committee. He
explained that the motion to make wchar_t a distinct type as presented
to the drafting committee missed changes that should be made to the
library section of the Working Paper. He thought it clearly indicated
that no one had really examined the impact of this proposal on the
library, but he doubted the omissions were grounds for defeating the
motion.

Ward announced her intention to invoke the two-week rule because she was
undecided about making wchar_t a keyword. She explained that the
proposal distributed two weeks before the meeting (92-0047 = NO124) did
not suggest making wchar_t a keyword. Roskind was also uneasy about
making wchar_t a keyword. He didn’t think the proposal captured the
sentiments of the Core WG.

Vilot suggested approving the motion and assigning a work item for the
Library WG to examine the proposal’s effects on the library. Someone
wanted the Extensions WG to look at the proposal. Bruck said he didn’t
know what the Extensions WG would do with it.

Plum didn’t thinkvihis proposal had a serious negative impact on C
compatibility. He explained that, several times during the development
of the C standard, the Japanese requested making wchar_t a keyword.

Scian asked if size_t might also become a keyword designating a distinct
type. Schwarz said he and Clamage looked at making size_t keyword, but
decided against it.

Plauger said he didn’t like the keyword, but this proposal is the right
solution. He agreed that we didn’t do all our homework, but we don’t
need to get it right before we vote it in.

Gray said this proposal was not discussed in the Core WG. The WG dis-
cussed the original paper (92-0047 = NO124) and found flaws, but they
didn’t see the proposal again until Clamage presented it to the full
committee. -

Lenkov, Plauger and Plum suggested tﬁét two-week rule could not be
invoked here. However, Lenkov agreed to check with X3 for a better
understanding of the rule.

Roskind wanted to put forward the original proposal from 92-0047 =
NO124. Neither Clamage nor Pennello agreed.

Straw vote: Who thinks the proposal is ready for a formal vote? lots
yes, 11 no.

About the motion to approve the Working Paper, Saks explained he and
0’Riordan discussed the motion Thursday evening, and decided the problem
in 7.4p5.5 was indeed the phrase "or object" added by Shopiro to the

X3J16/92-004 = WG21/NO1B, Page 35

June ‘92 Working Paper. O0’Riordan said he was nonetheless willing to
accept the Working Paper as is, as long as the minutes note that Shopiro
has an action item to fix that sentence.

Straw vote: Who accepts the motion as is? Tlots yes.

Saks presented the wording for the motion regarding the scope of names -
first declared as friends. Yaker questioned the use of the phrase "the
smallest non-class scope". Several suggested alternative wording, but
the coomittee decided to make no change. Saks said that future motions
should include definitions for terms that are part of the motion which
should be added to the glossary of the Working Paper.

Lenkov closed the committee of the whole.

Motion by Druker/Waggoner: "Move we accept 92-0060 = N0O137 as the
current Working Paper.”

Motion passed X3J16: 39 yes, 0 no.
Motion passed WG21: 5 yes, 0 no, 0 abstain.

Saks noted the following action items for Shopiro:

Clarification of the Working Paper:
7.4p5.5: fix it
9.2.1: item (3) regarding scope rules
11.5p1: regarding protected member access
12.4p4: regarding meaning of delete
12.4p10: regarding invocation of destructors

Refer to Extensions WG:

10.2pl1: regarding accessibility and return type of virtual
functions

15.5p2: regarding exception specifications, declarations and
definitions

Motion by Bruck/Gibbons: "Move we change 13.4p6.1 from:
An operator function must either be a non-static member function
or take at least one argument of a class or a reference to a
class.
to:

An operator function must either be a non-static member function
or take at least one argument of a class, a reference to a
class, an enumeration, or a reference to an enumeration.”

Motion passed X3J16: 39 yes, 0 no.
Motion passed WG21: 5 yes, 0 no, 0 abstain.

Motion by Pennello/Ward: "Move that we amend the Working Paper as
follows:

117

118

X3J16/92-0041 = WG21/N0118, Page 36

3.2pl: Change the next-to-last sentence, which begins
A name first declared ...

to

A name first declared by a friend declaration belongs to either
the global scope or a function scope; see 11.4. The name of a
class first declared in a return or argument type belongs to the
global scope. ~

9.1p2: Delete the last sentence, which begins
If a class mentioned as a friend...
11.4p3: Change the whole paragraph to
If a class or function mentioned as a friend has not been
declared, its name is entered in the smallest non-class scope
that encloses the friend declaration."
Pennello remarked .that the Core WG recognizes that the last sentence in
the change to 3.2pl1 is probably wrong, but the WG should address it
later. They haven’t changed the draft in this regard. He also noted
that the sentence prior to the sentence deleted from 9.1p2 points to
11.4pl, so there is no need to duplicate the sentence on friends.

Motion passed X3J16: 39 yes, 0 no.
Motion passed WG21: 5 yes, 0 no, O abstain.

Motion by Becker/Allison: "Move that we amend the Working Paper as
follows:

2.8pl: Add ‘wchar_t’ to the list of keywords.

2.9.2p4.2: Replace the entire sentence with
A wide-character literal is of type wchar_t.

2.9.4p4.2: Replace the entire senfence with
A wide-character string is of type array of wchar t.

3.6.1p4: insert the following paragraph before 3.6.1p4:
Type wchar_t is a type whose range of values can represent
distinct codes for all members of the largest extended character
set specified among the supported locales(_lib.locale). Type
wchar_t has the same size, signedness, and alignment require-
ments as one of the other integral types.

4.1pl.1: add ‘wchar_t, ' after ’A char, ’.

4.1pl.2: add ’wchar_t, ' after ", the char, ’.

° 59
X3J16/92-00t‘2 = WG21/NO1®, Page 37

4.1pl.4: replace 'If’ with ‘Except for type wchar_t, if’.
4.1pl1.4: insert the following after 4.1pl.4:

For wchar_t, if an int can represent all the values of the
original type, the value is converted to an int; otherwise if an
unsigned int can represent all the values, the value is
converted to an unsigned int; otherwise, if a Tong can represent
all the values, the value is converted to a long; otherwise it
is converted to unsigned long.

17.4.10p1.1 change ‘four’ to ‘three’.
17.4.10p2.1 change ‘and wchar_t (both’ to '(’."
Ward/Scian: "Move that we table this motion by Becker/Allison."

Motion to table failed X3J16: 16 yes, 22 no, 0 abstain.
Motion to table failed WG21: 0 yes, 5 no, O abstain.

In response to concerns raised over having separate procedural votes for
X3J16 and WG21, Lenkov said he will check with X3 on how to handle
procedural issues.

Motion by Becker/Al1lison passed X3J16: 33 yes, 7 no.
Motion by Becker/Allison passed X3J16: 5 yes, 0 no, 0 abstain.

Lenkov opened the committee of the whole.
=== Core ===

Lajoie explained the WG’s recent discussions on the lifetime of tempo-
raries. They considered three possible timings for the destruction of
temporary objects:

1. immediately

2. at end of statement (EOS)

3. at end of block (EOB) &

However, they discounted (1) because -it had previously been shot down by
the full committee at the Dallas meeting.

Lajoie summarized the WG's goals for the lifetime of temporaries:
1. The following must work:

const char *p = s + t;
printf("%s\n", p);

where s and t are string objects with implicit conversion to char *.
2. For expressions el, e2, and e3

el, e2; e3;

must be functionally equivalent to

119

120

X3J16/92-0041 = WG21/NO118, Page 38

el; e2; e3;

The solution must be consistent with other features of C++.

The solution must make programs written by "ordinary-non-expert"
users work.

The solution must be simple for programmers to explain, i.e., it
must be "teachable".

The solution must be efficient in terms of speed and space.
Programmers should have some control in destroying temporaries.

-~ (3,] o~ w
.

Winder said that some members of the Core WG felt they shouldn’t try too
hard to make goal 1 work. Schwarz suggested that goal 2 should be

2. For expressions el, e2, and e3
el, e2; e3;
must be functionally equivalent to
{ el; } e2; e3;

Lajoie reported that the WG considered current practice, but found that
every vendor handled temporaries differently, so that was no help.

Lajoie said the WG identified five control flow constructs under which
managing temporaries is a problem: ?:, [, &, goto-label, and switch.

They also considered two possible policies for managing temporaries

created in the branch of a control flow statement:

1. The compiler must "remember" if a temporary was created and destroy
it only if necessary. (Run-time flags are one possible implementa-
tion of this policy.)

2. The compiler treats temporaries like variables. That is, if control
flow jumps over the initialization of a temporary, it’s a compile-
time error.

The WG came up with four possible solutions by combining these two
policies each with EOS and EOB: - \
1. "EOS with flags" -- the compiler must generate flags for ?:, ||, and
&& to insure temporaries are destroyed.
"EOB with flags" -- the compiler must generate flags for ?:, ||, &8,
goto and switch to insure temporaries are destroyed.

3. "EOS with no flags" -- jumping over the creation of temporaries with
destructors in ?:, || or && is a compile-time error.
4. "EOB with no flags" -- jumping past the creation of temporaries with

destructors in ?:, ||, &%, goto, and switch is a compile-time error,

Plum noted that the Working Paper says (in 12.2) that "There are only
two things that can be done with a temporary: fetch its value..., or
bind a reference to it." He said he thought many WG members had the
opinion that the statement is misleading. It should include as a third
choice "take the address of part of a temporary”.

& 53
X3J16/92-00@ = WG21/NO1#, Page 39

Lajoie explained that the WG was concerned that the "EOB with flags"
approach was difficult to implement and ran slowly, and that exception
handling only made the concerns worse. They also had concerns about
"EOB with no flags", which was supposed to be conceptually simple
because it treats temporaries Jjust Tike variables. But temporaries can
be created in the middle of expressions, whereas variables can only be
created in declarations. If the WG decided to treat expressions that
create temporaries like declarations, then they would have to severely
limit the use of jumps in C++ programs. On the other hand, if they
created additional rules to permit Jumping past some, but not aill
expressions, then the "EOB with no flags" approach loses its conceptual
simplicity. :

The "EOB with no flags" approach also raises portability concerns. If
C++ translators must issue diagnostics for jumping past the creation of
a temporary, the standard must specify exactly where temporaries are
created and where they might be destroyed. A related question is:
Should C++ allow Jjumping past the creation of a temporary that has no
constructor and destructor. If so, does a C-style struct have a default
constructor and destructor?

Lajoie said that for all these reasons, the WG is leaning toward EOS.

But they have more work to do before they decide. She summarized the

assignments for the WG members:

1. The impact of flags models on run-time performance of applications,
including in presence of exception handling - 0’Riordan

2. A summary of issues on lifetime of temporaries - 0’Riordan and
Pennello

3. The meaning of "implicit initialization" and the meaning of default
constructors and destructors for C-style structs - Pennello

4. An analysis on different kinds of temporaries (e.g., dangerous vs.
safe) - Kendall

5. The implicit scope of a case statement - Adamczyk

Redelmeier asked why the WG discounted immediate destruction. Pennelio
said the WG was persuaded against it by Koenig’s killer example (the
function passthru) described in 92-00?0 = N0098.

$ruck asked if the WG had considered early creation of temporaries, as
in

void f(string s, string t)
{ // creating temporary string for s + t here???

if (...) {
char *p = s + t;
/] ...

} else {
char *q = s + t;
// ...

)
Lajoie said they had not.

121

X3J16/92-0041 = WG21/N0118, Page 40

=== Libraries ===

Vilot resumed Thursday’s discussion of whether ::operator new should

throw an xalloc exception rather than return null when the allocation

fails. He said that the primary effect of the change would be:

-- existing "erroneous" programs (those that do not check that new
returns null) would become safer

-- existing "correct" programs that test for a null return and abort,
would continue to work, but the existing code that tests for null
would become extraneous.

Plauger noted that the change only affects programs that check for null

and DON’T shut down. They will have to be rewritten. The WG was

generally of opinion that the change was worth the bother.

Arguing that ::operator new should continue to return null on failure,
0’Riordan gave the following example. Suppose you rewrite

bar() {
char *p = 0;
p = new char[128];
foo();
delete [] p;

as

bar() {
char *p = 0;
try {
p = new char[128];
} catch (xalloc) { }
foo();
delete [] p;
}

to accommodate the possibility that new might throw an xallec. Now, you
call bar, and the new expression in bar succeeds. bar proceeds to call
foo. foo, whatever it is, throws an xalloc. But, bar doesn’t catch it,
because the call to foo is outside the try block. So p is discarded
without destroying *p.

Becker and Druker said they realized that introducing exceptidns changes
the architecture of programs. Druker added that Stroustrup and Koenig
made that point in their original exception handling paper.

Vilot briefly summarized the WG's thinking on the string class. He said
the WG was considering splitting the string class into more than one
class with different comparison operators. When he asked the full

committee how they felt about this, most said they agreed with splitting
up the class.

11

12
12.1

12.2

13

28 s~
X3J16/92-00/@ = WG21/NO1M, Page 41

Steinmuller said the WG was close to agreement on low-level memory
management features for the string class. However, there were stilil
questions about higher level functionality. Vilot said Becker had
volunteered to work on a "text" class with higher level string
functionality.

Straw vote: Who wants Becker.to proceed? 1lots yes.

Plauger said that the normative addendum to the ISO C standard will be
distributed in an upcoming mailing. He said we will need to consider
the AFNOR C++ Expert’s request to keep the C and C++ libraries
synchronized.

Vilot listed the WG’s deliverables for the next meeting:
-- 17 Library Introduction - Vilot

-- 17.1 Language Support - Vilot

-- 17.2 Strings - Steinmuller

-- 17.3 1/0 - Schwarz

-- Letter to WG20 regarding Tocaledef - Plauger

-- 17.5 Bits - Allison

-- class text - Becker

Saks asked what the WG did about the AFNOR C++ Expert’s request. Vilot
said he thought we were already doing what they asked, so there’s
nothing more to do. Plum said he thought they had asked SC22 to form an
ad-hoc group to see that WG14 and WG21 are doing all they can to keep
the libraries synchronized.

Lenkov closed the committee of the whole.

New business (if any)

None.

Review of the meeting

Review of decisions made and documents approved

See Appendix B.

Review of action items

Lenkov reviewed the action items.

Schedule of mailings and volunteers to help

Ward announced that Tektronix won’t do the post-Portland mailing, so we
need another volunteer.

Plum said he’d heard of problems with past mailings in Europe. Siemens
Nixdorf offered to handle the mailing within Europe for the post-Toronto
and pre-Boston mailings.

123

14
14.1

14.2

14.3

14.4

15

X3J16/92-0041 = WG21/N0118, Page 42

Plans for the future
Agenda items for the next meeting

Saks said he did not want one general session, as had been the
practice. He wanted three distinct general sessions in this order:
1. for issues to be discussed in anticipation of a formal vote

2. for issues about which WGs would 1ike to hold straw votes

3. for W6 presentations for information purposes only

Schwarz asked for a separate agenda item on 7iostreams. Plum said we
need scheduled time for national delegation caucuses.

Technical sessions for the next meeting

Schwarz requested that we hold no technical sessions featuring outside
speakers.

Straw vote: Who wants to discontinue outside technical speakers? lots
yes, 2 no.

Day Schedule for the Boston Meeting

Lenkov asked if we should change Friday’s meeting time from the normal
08:30 to 12:30. No one had an opinion.

Gibbons wanted to be sure we did not schedule any votes past the
scheduled adjournment time.

Confirming hosts for the next three meetings

Plauger summarized meeting dates for the next three meetings:

-- Nov 1-6, 1992 in Boston, MA, hosted by OSF

-- March 7-12, 1993 in Portland, OR, hosted by Tektronix, Mentor
Graphics, and Sequent

-- July 11-16, 1993 in Munich, Germany, hosted by Siemens Nixdorf

Ad journment

The committee thanked Lajoie and Knutii]a of IBM for hosting the
meeting.

Motion by Plauger/Budge: "Move we adjourn."

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 5 yes, 0 no.

The committee adjourned at 12:33.

124

78 sy
X3J16/92-0084 = WG21/NO188, Page 43

Appendix A - Attendance

Name

Pieb, Wolfgang
Coleman, Kim
Rabinov, Arkady
Shopiro, Jonathan
Stroustrup, Bjarne
Krohn, Eric
Becker, Pete
Swan, Randall
Dovich, Steven J.
Friedenbach, Ken
Kendall, Sam
Druker, Samuel
KohImiller, Paul
Holly, Mike
Stump, Mike
Kelley, David
Allison, Chuck
Winder, Wayne
Adamczyk, Steve
Anderson, Mike
Yamaryo, Masakazu
Dewhurst, Steve
Lenkov, Dmitry
Greg Colvin

Choi, Ernest
Knuttila, Kim
Lajoie, Josee
Nelson, Clark
Roskind, Jim
Munch, Max
Schwarz, Jerry
Yaker, Laura
Pennello, Tom
Gray, Jan
0‘Riordan, Martin
Simonsen, Karl
Redelmeier, D. Hugh
McLay, Michael
Boreham, Tim
Vilot, Mike
Beech, David
Stone, Paul

Plum, Thomas
Charney, Reg
Wilcox, Tom

Saks, Dan

Budge, Kent G.
Koch, Gavin
Tooke, Simon
Kiefer, Konrad

Affiliation

Amdah1

Apple

Apple Computer

AT&T

AT&T Bell Labs
Bellcore

Borland International
C-Team

Cadence Design Systems
Cadence Design Systems
CenterLine Software
Cognex

Control Data Systems
Cray Research

Cygnus Support

Data General

DECUS

Digital Equipment
Edison Design Group
Edison Design Group
Fujitsu

Glockenspiel
Hewlett-Packard

I. H. S.

IBM

IBM

IBM

Intel

James Roskind Computing
Lex Hack & Associates
Lucid

Mentor Graphics
MetaWare

Microsoft

Microsoft

Microsoft

Mimosa Systems

NIST

Nutat Technologies
ObjectWare

Oracle

Perennial

Plum Hall

Program Conversions
Rational

Saks & Associates

Sandia National Laboratory

SAS Institute
SCO Canada
Siemens AG

<< PCC<IIDCI <D <P <D< > < CPrPra<<<Pd<C<<PCD << < - < < =

—f

<< C<D < <D< TP D <D< < < < <P<DP< < rPrra<<s<Pad<S<Pbadbad<IDD <

<< <P << P < << > <> << < << P< PC<rpC<rPrPr<<d<Pad<<PaP<<<P<<D< =
<SP << D < > <rPpa<<<D< <D< P<pPpC<IPrrPr<<<Pad<<<PI<dP<<DD

Th

P <D< < <> << Ppa<Ppbhbha<<dba<gD< < << -<< >

-

< S I <

125

X3J16/92-0041 = WG21/N0118, Page 44

Hartinger, Roland Siemens Nixdorf v V. Vv v YV
Steinmueller, Uwe Siemens Nixdorf A A A A A
Sloane, Alan Sun Microsystems v VvV Vv Vv vy
Bruck, Dag Swansea Agility Team v V VvV Vv Vv
Gibbons, Bill Taligent v VvV Vv v Yy
Meyers, Richard Taligent A A A A A
Clamage, Steve TauMetric vV VvV Vv Vv Vv
Ward, Cynthia Tektronix v VvV VvV Vv Yy
Traughber, Tom Texas Instruments v V. Vv Vv v
Rafter, Mark UK (Parallax) v V. Vv Vv v
Dodgson, David Unisys vV V. VvV Vv v
Houck, Christopher Unisys A A A A A
Waggoner, Susan US West v V. Vv Vv vy
Zeiger, Paul US West A A A A
Chapin, Peter Vermont Technical College v V. vV Vv vy
Scian, Anthony Watcom v V. Vv Vv v
Welch, James Watcom A A A A A
Dawes, Beman A A A A A
Nikolaidis, Peter A A A A A
Plauger, P. J. v VvV v Vv v
Price, Philip A A A A A
Terribile, Mark A A A A A
Total Attendance 67 69 68 67 64
Total Voting Members 45 45 45 43 41

Mark: V = voting; A = attending (not voting)

126

75 - A3
X3J16/92-00#& = WG21/NO1®, Page 45

Appendix B - Motions Passed

1. Motion by Shopiro/Bruck: "Move we approve 92-0041 = NO118 with these
corrections as the minutes of the previous meeting."

1. On page 1, change the date at the top center "1992".

N

On page 1, in the first sentence of item 1, delete "by Lenkov".

w

. |On page 11, in the first sentence of the paragraph beginning with
"Koenig explained", change "than" to "that".

4. On page 12, in the last sentence in the paragraph beginning "Plauger
thought", change "determined prior" to "determined by prior".

5. On page 15, add : public X to the declaration of Y in the code
fragment.

6. On page 18, in the first sentence of the third paragraph from the
end, change "produce a safe" to “"produce safe".

7. On page 21, in the third sentence of the second paragraph, change
"in style" to "in a style".

8. In Appendix B, add the motion by Plum/0’Riordan (from page 25) to

accept the Working Paper as item 4 and renumber all subsequent
motions.

Motion passed X3J16: lots yes, 0 no.
Motion passed WG21: 5 yes, 0 no.

2. Motion by Druker/Waggoner: "Move we accept 92-0060 = NO137 as the
current Working Paper."

Motion passed X3J16: 39 yes, 0 no.
Motion passed WG21: 5 yes, 0 no, 0 abstain.

3. Motion by Bruck/Gibbons: "Move we change 13.4p6.1 from:

An operator function must either be a non-static member function or
take at least one argument of a class or a reference to a class.

to:
An operator function must either be a non-static member function or
take at least one argument of a class, a reference to a class, an
enumeration, or a reference to an enumeration."

Motion passed X3J16: 39 yes, 0 no.
Motion passed WG21: 5 yes, 0 no, 0 abstain.

4. Motion by Pennello/Ward: "Move that we amend the Working Paper as
follows:

127

128

X3J16/92-0041 = WG21/NO118, Page 46

3.2p1: Change the next-to-last sentence, which begins
A name first declared ...

to

A name first declared by a friend declaration belongs to either the
global scope or a function scope; see 11.4. The name of a class
first declared in a return or argument type belongs to the global
scope.

9.1p2: Delete the last sentence, which begins
If a class mentioned as a friend...

11.4p3: Change the whole paragraph to
If a class or function mentioned as a friend has not been declared,
its name is entered in the smallest non-class scope that encloses
the friend declaration."

Motion passed X3J16: 39 yes, 0 no.
Motion passed WG21: 5 yes, 0 no, 0 abstain.

Motion by Becker/Allison: "Move that we amend the Working Paper as
follows:

2.8pl: Add ‘wchar_t’ to the list of keywords.

2.9.2p4.2: Replace the entire sentence with
A wide-character literal is of type wchar_t.

2.9.4p4.2: Replace the entire sentence with
A wide-character string is of type array of wchar_t.

3.6.1p4: insert the following paragraph before 3.6.1p4:
Type wchar_t is a type whose ranéé of values can represent distinct
codes for all members of the largest extended character set
specified among the supported locales(_lib.locale). Type wchar_t
has the same size, signedness, and alignment requirements as one of
the other integral types.

4.1pl.1: add ’‘wchar_t, ' after ’A char, .

4.1pl.2: add ‘wchar_t, ' after ’, the char, ’.

4.1pl.4: replace 'If’ with ’‘Except for type wchar_t, if’.

4.1pl.4: insert the following after 4.1pl.4:

18 °0
- X3J16/92-004 = WG21/NO1¥B, Page 47

For wchar_t, if an int can represent all the values of the original

type, the value is converted to an int; otherwise if an unsigned int
can represent all the values, the value is converted to an unsigned

int; otherwise, if a Tong can represent all the values, the value is
converted to a Jong; otherwise it is converted to unsigned long.

17.4.10p1.1 change ‘four’ to ‘three’.
17.4.10p2.1 change ‘and wchar_t (both’ to ’(’."

Motion by Becker/Allison passed X3J16: 33 yes, 7 no.
Motion by Becker/Allison passed X3J16: 5 yes, 0 no, 0 abstain.

129

